Webpage Classification with ACO-Enhanced Fuzzy-Rough Feature Selection

نویسندگان

  • Richard Jensen
  • Qiang Shen
چکیده

Due to the explosive growth of electronically stored information, automatic methods must be developed to aid users in maintaining and using this abundance of information effectively. In particular, the sheer volume of redundancy present must be dealt with, leaving only the information-rich data to be processed. This paper presents an approach, based on an integrated use of fuzzy-rough sets and Ant Colony Optimization (ACO), to greatly reduce this data redundancy. The work is applied to the problem of webpage categorization, considerably reducing dimensionality with minimal loss of information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Rough ACO: A Hybridized Model for Feature Selection in Gene Expression Data

Dimensionality reduction of a feature set is a common preprocessing step used for pattern recognition, classification applications and in compression schemes. Rough Set Theory is one of the popular methods used, and can be shown to be optimal using different optimality criteria. This paper proposes a novel method for dimensionality reduction of a feature set by choosing a subset of the original...

متن کامل

Enhanced Feature Selection Algorithm Using Ant Colony Optimization and Fuzzy Memberships

Feature selection is an indispensable pre-processing step when mining huge datasets that can significantly improve the overall system performance. This paper presents a novel feature selection method that utilizes both the Ant Colony Optimization (ACO) and fuzzy memberships. The algorithm estimates the local importance of subsets of features, i.e., their pheromone intensities by utilizing fuzzy...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006